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The effect of initial perturbation shape and symmetry on fold development 
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Abstract--Single-layer fold experiments were carried out to study the influence of initial perturbation symmetry 
on the symmetry of folds developed using paraffin wax as a rock analogue. Under experimental conditions, both 
matrix and layer have a power-law rheology, with an initial effective viscosity contrast of ca 17 : 1. The matrix 
flows in steady state with n = 2.7 and the layer work softens with nef f = 10. Folds developed from an initially 
symmetric perturbation remain symmetric, reflecting the pure shear-plane strain boundary conditions. Folds 
developed from an initially asymmetric perturbation, however, show a progressive exaggeration of this 
asymmetry, such that the introduced 3.5 ° difference in limb dip increases to 65 ° at 23% bulk shortening. These 
experiments indicate that, for low competence contrast between layer and matrix, the geometry of initial 
perturbations of finite amplitude (e.g. ripple marks, channels, half-graben structures) may be an important factor 
in determining the geometry and distribution of folds. 

INTRODUCTION 

TI-IE existence of random, minor perturbations in the 
original 'planar' layer, which can be selectively ampli- 
fied to form folds, is implicit in all theories of single-layer 
buckle folding (Biot 1957, 1959a,b, 1961, Ramberg 
1963, Fletcher 1974, 1977, Smith 1975, 1977, 1979). If 
larger, non-random perturbations are present within 
such a layer, however, the shape of this initial pertur- 
bation may influence the wavelength (Williams et al. 

1978), amplitude (Biot et al. 1961, fig. 5) and shape 
(Chapple 1968) of the folds developed. This effect 
should be most apparent for low competency contrast 
between layer and matrix, when the wavelength selecti- 
vity of the buckling mechanism is low (e.g. Biot 1961). 
The growth rate of the theoretical dominant wavelength 
may then be insufficient to outpace the amplification of 
initial perturbations of larger amplitude and different 
wavelength. 

The effect of isolated perturbations on fold develop- 
ment has been investigated analytically by Biot et al. 

(1961), numerically by Williams et al. (1978) and experi- 
mentally by Cobbold (1975). Cobbold (1975) showed 
that the development of fold packets within otherwise 
planar, homogeneously shortened layers was controlled 
by the presence of initial irregularities. He suggested 
that, in nature, laterally continuous fold trains may 
develop by sideways propagation and mutual inter- 
ference between fold packets initiated at many pertur- 
bation sites. This concept differs fundamentally from the 
more common models of folding, which assume selec- 
tive amplification of randomly distributed, very small, 
periodic perturbations with a broad range of initial 
wavelengths (cf. Biot 1961, Ramberg 1963, Fletcher 
1977, Smith 1979). In these models, the fold train 
develops instantaneously along the full length of the 
layer and does not involve sideways propagation from 
individual sites. 

Asymmetric folds are generally considered to form by 
compression oblique to the layer (e.g. Treagus 1973), by 
bulk non-coaxial flow (Ghosh 1966, Manz & Wickham 
1978, Casey & Huggenberger 1985) or by the develop- 
ment of asymmetric parasitic folds during polyharmonic 
folding (e.g. Ramsay & Huber 1987, fig. 20.1). The 
study discussed here investigates how the symmetry of 
individual initial perturbations, which initiate folding, 
can control the symmetry of the folds developed. The 
scale-model experiments were designed to test the 
hypothesis that asymmetric folds may in some cases 
develop through the amplification of an initially asym- 
metric perturbation shape, and may not necessarily 
reflect an asymmetric orientation of the layer relative to 
the shortening direction. This could be directly appli- 
cable to many natural examples, as irregularities in the 
original bedding surface often show a systematic asym- 
metry (climbing ripples, asymmetric ripple marks, flute 
casts, etc.), and such asymmetric pre-tectonic irregu- 
larities also occur on the regional scale (e.g. syn- 
sedimentary half-grabens). Non-systematic initial per- 
turbation asymmetry could result in irregular variation 
in fold asymmetry along a single layer. 

EXPERIMENTAL PROCEDURE 

If the effects of body forces (gravity, inertia) in both 
the model and the natural original can be ignored, the 
model ratios of time, length and force are mutually 
independent (Hubbert 1937, Cobbold 1975, Ramberg 
1981), but must be uniform throughout the model. 
Under these assumptions, model ratios can be chosen 
which best suit the experimental conditions. The one 
important restriction is that there must be rheological 
similarity between the original rock and the analogue 
modelling materials (Cobbold 1975, Weijermars & 
Schmeling 1986, Mancktelow 1988b). 
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Experimental conditions 

The scale-model experiments were conducted with 
boundary conditions of confined plane strain-pure shear 
using the deformation rig described by Mancktelow 
(1988a). The experiments were performed at a constant 
natural strain rate of 3 x 10-5 s -  1, at a temperature  of 27 
+ 0.1°C and with a confining stress 03 of 0.3 bar (0.03 
MPa). 

Modelling materials 

Paraffin waxes were chosen as our non-linear model- 
ling materials. These waxes display power-law stress- 
strain rate behaviour under experimental conditions 
(Mancktelow 1988b) and are rheologically similar to the 
predicted behaviour of many rocks during natural defor- 
mation (e.g. Tullis 1979). The highly refined waxes were 
obtained from major chemical suppliers (see appendix 
of Mancktelow 1988b). The single competent  layer was 
constructed from wax of melting range 58-60°C, the 
weaker matrix from wax of melting range 46-48°C. 
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Fig. 1. Differential stress (bars) vs strain (as % shortening) curves for 
the model materials under experimental conditions. (a) Calibration 
curves for single blocks of the matrix wax MP46--48 (melting range 46- 
48°C) and of the wax MP58--60 (melting range 58-60°C) used to 
construct the stiffer layer. (b) Stress--strain curves recorded during the 
folding experiments FAS4 and FAS5. Note that the stress-strain 
curves are practically identical and independent of the symmetry of the 
initial perturbation. The calibration curve for the matrix wax alone 

(MP46--48) is included for comparison. 

Under  the chosen experimental conditions, the matrix 
wax flows at nearly steady state (Fig. 1), with a power- 
law constitutive relationship between natural strain rate 

(in s -1) and differential stress a (in bars) of the form: 

k = A exp ( - Q / R  T) a n 

with calibrated values for the constants of 

A = exp (204) 

Q = 126 kcal tool -1 

n = 2.7. 

Further details can be found in Mancktelow (1988b). 
The stiffer wax used to construct the layers is work- 
softening under the same conditions (Fig. 1) and a 
constitutive relationship independent  of e is not poss- 
ible. For  our experimental conditions, the ultimate 
strength of the layer is 17.2 times the flow stress of the 
matrix wax (Fig. 1). 

Perturbation and layer geometry 

The initial perturbations were introduced as single 
arcs on an otherwise 'planar'  layer. The symmetric 
perturbation had initial limb dips of 6 ° , an amplitude of 
0.75 of the layer thickness and, to a first approximation, 
a bell-like shape (cf. fig. 2 of Biot et al. 1961); the 
asymmetric perturbation had limb dips of 4.5 ° and 8 ° , 
respectively, and an amplitude of 0.64 of the layer 
thickness. The initial bonding between layer and matrix 
was weak, corresponding to the assumption of easy slip 
between layer and matrix in folding theories (e.g. Biot 
1959b, 1961). 

EXPERIMENTAL RESULTS 

Fold shape 

It is very obvious from a comparison of the photo- 
graphic records for the two experiments in Fig. 2 that the 
fold initiated on an asymmetric perturbation (FAS4) 
develops an exaggerated asymmetry at high fold ampli- 
tudes. The asymmetry is also very marked in the hetero- 
geneous strain distribution in the immediately surround- 
ing matrix, as is seen in a plot of the long axes of the 
finite-strain ellipses at 23% shortening (Fig. 4a) and the 
trajectories constructed parallel to these axes (Fig. 4b). 
This is particularly marked within the highly strained, 
inner arcs of the folds. 

This asymmetry in the matrix deformation diminishes 
rapidly away from the layer, however. This can be seen 
directly in the photographic record (Fig. 2b), where the 
displacement of the grid lines is approximately sym- 
metric only a short distance from the strongly asymmet- 
ric fold in the layer, and likewise from the plots of Fig. 4. 
It can also be seen from Fig. 4(b) that the location of the 
low strain, triangular zone within the matrix on the outer 
arc of the folds (cf. Ramsay & Huber  1987, fig. 21.23) is 
similar in the two experiments. Its location and form 
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FAS5 FAS4 
(a) (b) 

Fig. 2. Photographic record of the symmetric experiment FAS5 (a), and th e asymmetric experiment FAS4 (b). In both 
cases, the photographs were taken at 0, 8, 16 and 23% shortening and the initial layer thickness was 4 mm. 
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Fig. 3. Natural example of irregular asymmetric folding (calcareous flysch from Cinque Terra, Italy). The folded layer is a 
white calcite vein of coarser grain size than the calcite in the matrix of calcareous shale. The geometry of layering and 

cleavage, as emphasized in the line drawing, can be compared directly with the strain trajectories of Fig. 4(b). 
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Fig. 4. (a) Plot of the long axes of the finite-strain ellipses at 23% shortening for the symmetric and asymmetric 
experiments. (b) Trajectories parallel to the axes of (a). This pattern may be directly compared with the cleavage pattern in 

natural examples to check for correspondence. 

appear to be largely determined by the bulk strain. As a 
result, it is displaced with regard to the axial plane of the 
asymmetric fold. A similar geometry was observed for 
folds developed experimentally during simple shear by 
Manz & Wickham (1978). This characteristic pattern 
does not, therefore, allow a distinction between the 
effects of initial perturbation geometry and rotational 
boundary conditions. 

The folding of the layer itself can be analysed in more 
detail by considering the history of limb dip at the 
inflection points. This is presented as a plot of limb dip 
against percent shortening for the symmetric case in Fig. 
5(a) and the asymmetric case in Fig. 5(b). Curves calcu- 
lated for the dip of the limb segments, had they behaved 
as passive material lines in a homogeneous deformation, 
are also presented for comparison. The marked differ- 
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Fig. 5. Dips of the two limbs (measured at the inflection points) of the central fold developed from the initial perturbation, 
plotted against the percent shortening. The calculated curve for the orientation of these limbs, had they behaved as passive 
material lines in a homogeneously deforming matrix, is also given. (a) Symmetric initial perturbation (experiment FAS5). 

(b) Asymmetric initial perturbation (experiment FAS4). 
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ence between the calculated and the observed behaviour 
represents the effect of the mechanical instability. The 
two limbs of the initially symmetrical perturbation be- 
have identically and, therefore, maintain the symmetry 
of the central fold throughout the experiment (Fig. 5a). 
In contrast, the initial difference in the dip of the two 
limbs of the asymmetric perturbation is greatly ampli- 
fied during deformation (Fig. 5b), from 3.5 ° at 0% to 65 ° 
at 23% shortening. The asymmetry has been markedly 
accentuated by the deformation, even though the 
boundary conditions of the experimental deformation 
are symmetric and coaxial. 

Fold propagation 

The progressive distribution of the fold train along the 
layer, by sideways propagation away from the initial 
perturbation, is slow. Shortening of the stiffer layer by 
folding is largely restricted to the central region around 
the perturbation (Fig. 2). Indeed, the rate of propaga- 
tion appears to be less than the already limited rate in the 
experiments of Cobbold (1975). This may be influenced 
by the degree of bonding between layer and matrix. In 
our experiments the degree of bonding was weak, and 
the preferential folding at one site on the layer around 
the initial perturbation is accommodated by displace- 
ment of the layer relative to the matrix in the straighter 
segments to either side. In contrast, Cobbold (1975) 
attempted to achieve a high degree of bonding, slip 
between layer and matrix was more difficult, and the 
fold train propagated laterally more rapidly. It appears 
that strong and even bonding between layer and matrix 
promotes the development of a more regular fold train. 
The low rate of sideways propagation may also be due to 
the strain-softening behaviour of the stiffer layer, which 
would tend to promote strain heterogeneity by preferen- 
tially accommodating strain within already strongly 
strained material. In contrast, both matrix and layer 
flowed at nearly steady state in the experiments of 
Cobbold (1975). 
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Fig. 6. Plot of layer-parallel shortening vs bulk shortening for both 
experiments. The curve is a third-order polynomial best-fit to the data 
from experiment FAS5. The first- and second-order derivatives of this 

curve are used in Fig. 7. 

the overwhelming mechanism by which bulk shortening 
of the layer is accomplished (first derivative --~1 at 0%), 
but that it steadily loses in influence, until at around 20% 
bulk shortening it is insignificant (cf. Hudleston 1973). 

Fold amplification 

The two experiments discussed here were designed to 
evaluate the influence of perturbation geometry and not 
specifically to investigate the selection and growth of a 
dominant wavelength within a buckled layer. The initial 
perturbations are of finite amplitude, with introduced 
limb dips ->5 ° , and thus beyond the scope of conven- 
tional infinitesimal-amplitude treatments (Chapple 
1968). With this limitation in mind, however, the results 
can still be compared with many previous theoretical 
and experimental studies on fold initiation and amplifi- 
caion (e.g. Biot 1961, Sherwin & Chapple 1968, Hudles- 
ton 1973, Fletcher 1974, Cobbold 1975, Smith 1979, 
Neurath & Smith 1982). 

Layer-parallel shortening 

The amount of layer-parallel shortening was calcu- 
lated as: 

% layer shortening = 10 - l_______~a × 100%, 
l0 

where 10 and l 1 are the initial and deformed arc lengths 
measured from end-to-end along the layer (e.g. Hudles- 
ton 1973). The results are presented in Fig. 6, plotted 
against the bulk shortening as determined for a straight 
line joining the ends of the layer. There is a remarkable 
degree of consistency, which was not entirely expected 
considering the markedly different end geometries. A 
third-order polynomial provides a nearly perfect fit to 
the data points of experiment FAS5 (the symmetric 
perturbation), and the first- and second-order deriva- 
tives of this fitted curve are plotted in Fig. 7. From this 
plot it is clear that layer-parallel shortening is initially 
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Fig. 7. First- and second-order derivatives for the layer-parallel short- 
ening curve of FAS5 in Fig. 6. The first-order derivative gives the rate 
of layer-parallel shortening: a value of t indicates that all the bulk 
shortening can be accommodated by layer-parallel shortening, a value 

of 0 that none of it is. 
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Fig. 8. Amplitude of the central fold developed from the initial 
perturbation in the two experiments FAS4 and FAS5. The slope of the 
curve at any point represents the growth rate at that value of natural 
strain• The initial growth rate is effectively constant to ca 10% 

shortening, with a value of about 10. 

Following Smith (1977) and Neurath & Smith (1982), 
the normalized growth rate, 7, is defined as (dA/A) = 
-7 (dL /L ) ,  where A is the disturbance amplitude and L 
is the length of a passive marker line far from and 
parallel to the layer (=- to the length of the model parallel 
to the layer). On integration, this becomes ln(A/Ao) = 7 
ln(L0/L). To obtain 7, we plot ln(A/Ao), i.e. the natural 
log of the normalized amplitude, against ln(Lo/L), 
which is - e  (the natural or logarithmic strain). The slope 
of this curve at any point will equal the growth rate as 
defined above. It is immediately clear from Fig. 8 (and 
also from fig. 6 of Neurath & Smith 1982), that this plot is 
only linear at very low strains ( - e  <0.1, ~10% shorten- 
ing), corresponding to limb dips of the central fold of less 
than 30 ° (Fig. 5); within this linear range the growth rate 
of the initial perturbation is approximately 10. As can be 
seen from the summary plot of Fig. 9, the results are 
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Fig. 9. Summary of published results on experimental growth rates of 
folds (based on the collation in tables 2 and 3 of Neurath & Smith 
1982). The solid curves give the theoretical initial growth rates for folds 
in linear viscous materials and for non-linear materials with effective 
stress exponents nl = 2.7 (matrix) and ~ = 2.7 and 10 (layer) using the 

equations of Fletcher (1974) and Smith (1979). 

broadly consistent with the earlier experiments of Cob- 
bold (1975) and Neurath & Smith (1982). The growth 
rate in our experiments is, however, lower than 
expected from the relevant non-linear fold theory (Fig. 
9). There are probably two factors contributing to this 
observation. Firstly, the growth rates determined in all 
these experiments (including those of Cobbold 1975 and 
Neurath & Smith 1982) were measured on finite- 
amplitude folds developed from small but finite initial 
perturbations. These rates may be consistently lower 
than the initial growth rate within the scope of the 
infinitesimal-amplitude theoretical treatments (limb dip 
<5°), where direct experimental measurement is im- 
practical. Secondly, as noted by Biot et al. (1961), the 
growth rate of the central fold developed from an initial 
bell-shaped perturbation with average wavelength 
longer than the theoretical dominant wavelength (i.e. 
our case), is less than the growth rate of an initial 
perturbation with average wavelength equal to the 
theoretical dominant wavelength. This effect becomes 
more marked as the competence contrast between layer 
and matrix decreases (Biot etal. 1961, fig. 5), and may be 
further influenced by the observed layer-parallel short- 
ening. 

Wavelength selection 

The wavelength of folding has been determined in two 
ways: by Fourier spectral analysis and by measuring the 
average fold arc lengths (Sherwin & Chapple 1968, 
Hudleston 1973, Fletcher & Sherwin 1978). The results 
are listed in Table 1. The internal consistency between 
the two experiments is remarkably good, and indicates 
an initial preferred wavelength to layer thickness ratio of 
around 10. The imposed boundary conditions demand 
the development of an integer number of half-folds 
within the layer length, because the ends of the layer 
represent fixed nodes. This, of course, places restric- 
tions on the possible values of N in Table 1, and restricts 
the accuracy of our wavelength determination. In sum- 
mary, the design of the current experiments does not 
allow a rigorous study of the wavelength selection pro- 
cess, but suggests a preferred wavelength to thickness 
ratio of ca 10. 

Table 1. Average fold arc lengths for the two experiments, defined as 
the total arc length measured along the layer (L) divided by the 
number of folds (N) and normalized against the layer thickness (d). 
Values were calculated at initiation (0%) and at 23% shortening; the 
difference reflects the layer-parallel shortening (and consequent layer 
thickening) during the experiments. The dominant wavelength was 
also estimated by Fourier spectral analysis. Power spectra were 
calculated at intervals of ca 4% bulk shortening (to 23%, cf. Fig. 2), 
allowing a projection of the maximum amplitude fold component 
towards a limit of 0% strain to determine an initial dominant 

wavelength; these are the values given in the table 

No. of folds 
Experiment (N) Lo%/N/doo/o Lz3%/N/d23o/o Fourier 

FAS4 7 10.2 8.1 9.1 
FAS5 7 10.8 8.6 10.8 
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Fig. 10. Strain softening behaviour of wax MP58-60 (the material 
used to construct the stiff layer in the model experiments), shown as a 
plot of natural log differential stress (in bars) vs natural strain. A linear 
plot would represent an exponential decay of flow stress with strain. 
The value e* is the strain at which the stress falls to 1/e of its initial value 

(i.e. the ultimate strength). 

As discussed above, our model materials are not 
linear-viscous, but follow a power-law relationship. For 
the experimental conditions employed, the matrix flows 
at near steady state, whereas the competent single layer 
shows significant strain softening (Fig. 1). Neurath & 
Smith (1982) proposed an extension of the theory of 
buckling instability in non-linear materials to strain- 
softening materials. For simplicity, they assumed an 
exponential decay of flow stress with strain, which 
appears to be approximately true for the stiff paraffin 
wax used for the layers in our experiments (Fig. 10). 
They defined a measure of the degree of strain softening, 
e*, as the strain at which the deviatoric flow stress drops 
to (i/e) of its initial value. Linear regression of the data 
in Fig. 10 gives a value of e* ~ 0.5. Neurath & Smith 
(1982) concluded that the combined effect of strain and 
strain-rate softening can be characterized by defining an 
effective power-law exponent, which is dependent on 
both e* and the growth rate 7: 

1 1 2 

ne f  f n X/3~e*" 

The second term in this equation gains in significance for 
slow growth rates (i.e. low competence contrast be- 
tween layer and matrix) and low e* (strongly work- 
softening materials). Substituting values of 10 for 7 (see 
the section on fold amplification above), 0.5 for e*, and 3 
for the stress exponent n, the effective power-law stress 
exponent for our stiffer wax would be around 10. 

With this value for the exponent in the competent 
layer and a value of 2.7 for the matrix, the non-linear 
theory of Fletcher (1974, 1977) and Smith (1975, 1977, 
1979) would suggest a dominant wavelength to thickness 
ratio of about 6, compared with a value of around 9 for 
linear viscous materials (Biot 1961). In our experiments, 
folds developed with initial normalized wavelengths of 

around 10, which is somewhat longer than the dominant 
wavelength predicted by the non-linear theories. Wil- 
liams et  al .  (1978) found that in their finite-element 
simulations of linear viscous folding, the selected wave- 
length was always greater than that predicted by Biot 
when the introduced initial perturbation was of wave- 
length significantly longer than the theoretical dominant 
wavelength. The fold never attained the wavelength 
characteristic of the viscosity ratio and indeed the whole 
development of the fold depended on the initial pertur- 
bation. This may be directly compared to our experi- 
ments, where the initial, non-periodic perturbation has 
an arc length of ca  11.5 times layer thickness (i.e. a 
'wavelength'/d ratio of ca  23), which is clearly much 
larger than the expected (and observed) dominant wave- 
length. 

NATURAL EXAMPLES 

Measurement of natural folds gives low wavelength to 
thickness ratios, usually < 10 and commonly in the range 
4--6 (e.g. Sherwin & Chapple 1968, table 1, Smith 1979, 
table 1). This implies a correspondingly low effective 
viscosity ratio between layer and matrix (~50) and non- 
linear material behaviour to achieve the amplification of 
the observed folds (Smith 1979, fig. 3). For such natural 
conditions, the influence of the geometry of the initial 
irregularities in the layers may be significant, particu- 
larly since natural irregularities are often non-random in 
their geometry and distribution. 

Not all natural folds show a simple and regular period- 
icity. Indeed, many are quite irregular in their wave- 
length, amplitude and geometrical form (e.g. Fletcher & 
Sherwin 1978, fig. 1). An example of such a wave train 
within a single layer is shown in Fig. 3. The cuspate- 
lobate fold form (cf. Ramsay & Huber 1987, figs. 19.14- 
19.16), together with the low wavelength to thickness 
ratio (=9-10) suggest a rather low effective viscosity 
contrast between layer and matrix during folding. The 
orientation of the axial plane varies from fold to fold, 
while the cleavage away from the folded layer is near 
planar, constant in orientation and perpendicular to the 
layer; the overall shortening was approximately parallel 
to the layer. It is obvious in this natural example, 
therefore, that the geometry of each fold is controlled by 
some factor intrinsic to that individual fold (presumably 
the initial perturbation geometry) rather than an extrin- 
sic factor such as the bulk-strain geometry. The natural 
cleavage pattern of Fig. 3 may be directly compared with 
the strain trajectory pattern of the asymmetric fold 
experiment (FAS4) in Fig. 4(b). The characteristics are 
very similar: variability in cleavage orientation is only 
developed in the immediate vicinity of the asymmetric 
folds and particularly on the inner arcs, while the tri- 
angular, low strain zones on the outer arcs maintain a 
relatively symmetrical distribution. 

For more regular natural fold trains, the influence of 
periodic initial irregularities on the buckling behaviour 
is more difficult to determine. The control of fold geom- 
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ome t ry  by pre-existing structures m a y  in some cases be 
established by direct observat ion,  for  example  if synfor-  
mal hinges always cor respond  to the base of  scour 
channels.  Howeve r ,  this m a y  not  always be possible,  as 
the initial irregularities m a y  have been  quite small, but  
still significant in initiating folding. 

C O N C L U S I O N S  

irregularities are part icularly c o m m o n  as sed imentary  
structures in bedding,  and their influence on folding 
during natural  de format ion  may  be widespread.  
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The exper iments  demons t ra te  that ,  for  relatively low 
compe tence  contrast  (ca 17:1 in this s tudy),  the sym- 
met ry  of  small initial irregularities in the layer  may  
control  the symmet ry  of  the folds developed,  indepen-  
dent ly  of  the bulk-strain geometry .  As  the result  of  
shor tening parallel to the layer of  23%,  an initial minor  
a symmet ry  in limb dip of  only 3.5 ° was exaggera ted  to 
65 ° . This marked  asymmet ry  in the folded layer  is 
reflected in the strain distribution within the immedi-  
ately adjacent  matrix,  but  this a symmet ry  diminishes 
rapidly away f rom the fold. The  exper iments  also em- 
phasize the impor tance  of  isolated irregularities in loca- 
lizing the site of  fold initiation (cf. Biot  et al. 1961, 
Cobbo ld  1975). The  observed  p ropaga t ion  of  the fold 
train along the layer is relatively slow, such that  the fold 
packet  remains  concen t ra ted  a round  the site of  the 
initial per turbat ion.  This may  be exaggera ted  in our  
exper iments  by the strain softening behaviour  of  the 
layer material ,  tending to preferential ly a c c o m m o d a t e  
fur ther  strain increments  within the already strained 
region.  R o c k  mechanics  exper iments  suggest that  the 
comple te  range of  s t ra in-dependent  behaviour ,  f rom 
strain hardening,  th rough  steady-state,  to  strain soften- 
ing may  occur  in rocks under  different  geological  con- 
ditions (e.g. the review of  Tullis & Tullis 1986). This 
could be reflected in the folding behaviour  of  single 
layers, f rom a t endency  to strain homogen iza t ion  in 
strain hardening materials,  with lower  fold amplification 
rates and rapid layer-parallel  p ropaga t ion  of  fold trains, 
to  marked  strain concent ra t ion  for  strain softening ma- 
terials, resulting in rapid amplification and the concen-  
trat ion of  folding in packets  sur rounding  initial per tur-  
bations. 

As  expected for  low compe tence  contrast  condit ions,  
layer-parallel  shor tening during folding is also signifi- 
cant,  reaching values of  a round  10% at 25% bulk short-  
ening. The  deformat ion  of  the layer clearly cannot  be 
divided into a discrete two stage history of  initial layer 
parallel shor tening fol lowed by folding of  a layer of  
constant  thickness. The  change in layer length occurs  
progressively during folding, but diminishes in relative 
impor tance  as deformat ion  proceeds  (Fig. 6). Similar 
exper imental  observat ions  were  made  for  folds in linear 
materials  by Hudles ton  (1973). 

M a n y  natural ,  single-layer folds have a geome t ry  and 
wavelength  indicative of  low compe tence  contrast  fold- 
ing (e.g. Sherwin & Chapple  1968); as is clear f rom the 
current  exper iments ,  the symmet ry  and distr ibution of  
folding within such layers will be s trongly control led by 
any initial, n o n - r a n d o m  irregularities of  finite size. Such 
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